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Applying a finite color symmetry group, it is shown that every "elementary 
particle" can be associated with a unique graph. This graph describes the gluon 
motions and is called the particle's strong graph. One also has an associated 
weak graph that describes the photon motions. Using the strong (weak) graph, 
one can exhibit the various strong (weak) decay modes of a particle. Roughly 
speaking, the particle graph disintegrates into smaller graphs that represent the 
decay products. The disintegration is dictated by certain decay operations and 
these operations have specified probability costs. The costs are then used to 
predict branching ratios and decay probabilities. For the examples presented, 
these predictions agree with experiment to within 1%. 

1. I N T R O D U C T I O N  

In a previous work (Gudder ,  1988), I presented a finite model  for 
"e lementary  particles." In this model ,  each particle is represented by a 
graph. The vertices o f  the graph correspond to quarklike consti tuents and 
the edges correspond to gluon or photon  paths. The gluons and photons  
perform a quan tum r andom walk along the specified paths that is governed 
by a unitary absorp t ion-emiss ion  matrix. In fact, the entries o f  this matrix 
are transit ion ampli tudes that are discrete analogs o f  con t inuum Feynman  
transit ion amplitudes.  The possible gluon and pho ton  energy values were 
computed  in terms of  the eigenvalues o f  the absorp t ion-emiss ion  matrix. I 
then postulated certain mass formulas in terms of  these energy values and 
the structure o f  the cor responding  graph. The mass formulas gave predicted 
particle masses that closely agreed with experiment  for a large number  o f  
particles. 

The present paper  applies this model  to the study of  particle decay. I 
first derive the strong particle graphs by postulat ing a certain finite color  
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symmetry group. The weak and strong decays are described by a disintegra- 
tion of the graphs into smaller graphs that represent decay products. Each 
step in the disintegration has a specified probability cost. These costs are 
used to predict branching ratios and decay probabilities. Sections 2 and 3 
treat strong and weak graphs, respectively, while Sections 4-6 consider 
weak baryon, weak meson, and strong baryon decays, respectively. Some 
concluding remarks are given in Section 7. 

2. STRONG GRAPHS 

As with most elementary particle studies, a symmetry group plays a 
basic role in this model. However, unlike the traditional theories, this is a 
finite model and the symmetry group is a small finite group. In fact, it is 
the smallest non-abelian group, namely the dihedral group D3 (or the 
symmetric group Ss). 

Let us first consider the strong graph associated with a particle. Since 
the strong interaction is a "color"  interaction, let us begin with the set of 
color charges 

S = { r , y , b , ? , ; , b } .  

There are two important bijections on S, the color rotation c: S-~ S defined 
by 

c ( r ) = y ,  c ( y ) = b ,  c ( b ) = r ,  c(e) =/~ c(37) = ?, c(b) = f  

and the color-anticolor flip f :  S-+ S defined by 

f ( x )  = .~, f ( g )  = x, x e S 

If  we denote the compositions by juxtaposition and denote the identity 
function by e, then f and c satisfy 

f 2  = f f  = e, c 3 = e, c f  = f c  2 (1) 

It then follows that c and f are the generators of a group G of bijections 
on S. In fact, G is isomorphic to the symmetric group $3 of all bijections 
on a three-element set, which, in this case, coincides with the dihedral group 
/)3 of order 6. This is easily seen from Table I, which is the group table 

Table I. Group Table 

e C c 2 f f c  c f  

e e c c 2 f f c  c f  

c c c 2 c c f  f f c  

c 2 c 2 e c f c  c f  f 

f f f c  c f  e c c 2 

f c  f c  c f  f c 2 e c 

c f  c f  f f c  c c 2 e 
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c 2 

Fig. 1. Cayley graph for G. 

for G. Table I can be constructed directly or more easily by applying 
equation (1). A useful way of picturing a finite group is given in terms of 
its Cayley graph. The vertices of the Cayley graph represent group elements 
and directed edges of the graph represent the actions of a minimal set of 
generators for the group. The Cayley graph for our group G is illustrated 
in Figure 1. In Figure 1 the edges of the two triangles represent the action 
of c and the three double edges represent the action of f 

Another way to picture G is to diagram the actions of the functions c 
and f on the set S as illustrated in Figure 2. In this figure, the three vertices 
represent color-anticolor pairs (r, ?), (y, 37), (b,/7). The outer edges of the 
triangle represent the action of c on the first argument of a pair and the 
inner edges of  the triangle represent the action of  c on the second argument. 
The left loop of a loop pair represents the action o f f  on the first argument 
and the right loop represents the action o f f  on the second argument. 

f f 

Fig. 2. Graph for G. 
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Fig. 3. Identified vertices. 

(r,y. b) (r,y.b) 

Fig. 4. Another graph for (3. 

Notice that Figure 2 is obtained from Figure 1 by identifying the vertices 
in the pairs (e , f ) ,  (c, fc), (c 2, cf). We can obtain another description of G 
from Figure 1 by identifying the vertices e, c, c 2 a n d f f c ,  cf This is illustrated 
in Figure 3. A more economical way of depicting Figure 3 in accordance 
with the actions of c and f on S is illustrated in Figure 4. Figures 2 and 
4 will be useful in our study of elementary particles. 

Let us assume that the graphs in Figures 2 and 4 represent elementary 
particles. The vertices of  these graphs represent quarklike constituents of  
the particles. Since interactions in nature are not caused by functions such 
as c and f but are mediated by particles, assume that the edges of  these 
graphs represent interaction paths for gluons. I f  we strip the vertices of 
their labels and the edges of  their arrows, we obtain the graphs M and B 
in Figure 5. 

I call subgraphs of M meson graphs and subgraphs of B are called 
baryon graphs. Now there are many meson and baryon graphs that do not 
correspond to actual particles. In order to restrict the number  of  possibilities, 
I introduce two important properties of  the vertices. Each vertex of a meson 

M 
Fig. 5. Graphs M and B. 
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or baryon graph has an (electric) charge +1/3 or +2/3 and a (z component 
of) spin +1/2  (up, down). I now postulate the following charge rules. 

(C1) The sum of the charges is integral. 
(C2) If a vertex has an odd number of loops, then its charge is •  

and if a vertex has an even nonzero number of loops, then its charge is +2/3. 
Rule C1 is a standard property for quark models and Rule C2 gives 

the usual quark and lepton generations. I next postulate the following meson 
spin rules. 

(M 1) The two vertices have opposite spin if and only if they are joined 
by one or two edges. They have the same spin if and only if they are joined 
by three edges. 

(M2) For opposite spin, if both vertices have at least one loop, then 
they are joined by two edges and if exactly one vertex has at least one loop, 
then they are joined by one edge. 

As shown in Gudder  (1988), more edges give higher energies. Rule M1 
now follows from the fact that it takes more energy to keep spins aligned 
than disaligned. Rule M2 indicates that in the opposite-spin case, more 
energy is required when both vertices have loops than if just one does. 

Finally, I postulate the baryon spin rules. 
(B1) Two vertices have opposite spin if and only if they are joined by 

one edge and they have the same spin if and only if they are joined by two 
edges. 

(B2) If two vertices have the same charge and the same number of 
loops, then they have the same spin. 

Rule B1 follows from the same reasoning as Rule M1. Rule B2 is a 
graph-theoretic exclusion principle analogous to antisymmetric fermion 
states. A meson graph that obeys Rules C1, C2, M1, and M2 is called 
admissible meson graph. A baryon graph that obeys Rules C1, C2, B1, and 
B2 is called an admissible baryon graph. 

It turns out that there is a one-to-one correspondence between meson 
isospin multiplets and admissible meson graphs. Figure 6 exhibits this 
correspondence for the established meson isospin multiplets. In this figure 
an open circle represents a vertex with spin 1/2 and a filled circle represents 
a vertex with spin -1 /2 .  

Notice that in this model, edges between different vertices correspond 
to strong interactions and loops correspond to weak interactions. Moreover, 
one loop corresponds to strange quarks, two to charmed quarks, and three 
to bottom quarks. In a similar way, there is a one-to-one correspondence 
between baryon isospin multiplets and admissible baryon graphs. These are 
exhibited in Figure 7 for the established baryons. 

The standard quark model postulates the existence of further quark 
constituents such as the top quark. Such quarks would require four or more 
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Fig. 6. Admissible meson graphs. 
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Fig. 7. Admissible baryon graphs. 
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c b t 
Fig. 8. Lepton and quark graphs. 

loops. These can be accommodated in the present model, if necessary, by 
including more colors and, hence, more loops. For completeness, I illustrate 
graphs for leptons and quarks in Figure 8. These are point particles with 
just one vertex and the usual charges. 

I call the graphs in Figures 6 and 7 strong graphs. I have not yet 
designated the electric charge for vertices of strong graphs. I f  this is done 
in accordance with the previous rules, then the usual isospin multiplet 
structure results. This is illustrated in Figure 9 for the first few baryons. 
Similar graphs can be constructed for the mesons. In the sequel I shall 
frequently only consider particles, since their corresponding antiparticles 
are obtained in the standard way by negating all charges. Moreover, if we 
flip all spins, the particle (or graph) is considered to be the same. 

s 

! 2 

T.o 

_ 1  ~ 1 

2 2 2 _ _1 _./1 

P _! Z -  

-~ 
1 I _1  2 2 -~- -~ - ~ 

A- ~o /x. A++ 

Fig. 9. Multiplet structure. 
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N(i535) 
N(1440) N(1520) N(1650) 

N(1680) N(1700) 
N(1710) 

N(1720) 

Fig. 10. Excited baryons. 

Until now I have considered what I call basic mesons and baryons. 
To account for the other known particles one must also consider excited 
mesons and baryons. The graphs of these excited particles are obtained by 
adjoining pairs of new vertices that I call excitation vertices to the graphs 
of the basic particles. The additional edges are called excitation edges. The 
excitation vertices must be adjoined according to certain rules (Gudder, 
1988). Figure 10 illustrates some excited nucleons. In this figure excitation 
vertices are denoted by open squares (spin 1/2) and filled squares (spin 
-1 /2 ) .  Other excited particle graphs are obtained in a similar way (Gudder, 
1988). 

3. W E A K  G R A P H S  

The edges and loops in the strong graphs of Section 2 represented 
gluon paths. However, due to electroweak interactions, one also has photon 
paths (there is no need to postulate the existence of weak gauge bosons in 
this model). I could adjoin new edges to the strong graph to represent these 
photon paths; but for simplicity I shall construct a new graph which I call 
a weak graph. The weak graph for a particle has the same vertices and loops 
as the strong graph but the edges joining distinct vertices are different. For 
weak meson graphs I postulate the following rule (Gudder, 1988) (see 
Figure 11 for illustrations). 
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v 2 ~ 1  1 2 1 1 2 ,- --: ~ )  . eFmza _ 
- 3  ( ~ - ~ -  -3 3 -g " " - " I "  ~ _! K- - ~  1 KO 

~0 ~0 3 -~ 

Fig. I I .  Weak meson graphs. 

1 2 2 2 

Fig. 12. Even number of loops. 

(WM) if the electric charges of the two vertices have the same sign, 
they are joined by one edge. If they have opposite sign, they are joined by 
four edges. 

For weak baryon graphs one has the following rule (Gudder, 1988). 
(WB) If the baryon contains an even (odd) number of loops, the weak 

graph has the form exhibited in Figure 12 (Figure 13). 
Note that Figures 12 and 13 are the same except -1/3 and 2/3 are 

interchanged. In Figures 12 and 13 I have ignored the spin and the loops 
of the baryon, which can be arbitrary if they do not violate any of the rules. 
Figure 14 illustrates some weak baryon graphs. Since the leptons only have 
loops, their weak and strong graphs are identical. 

2 1 1 1 

2 2 2 2 _ 1  

Fig. 13. Odd number of loops. 
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Fig. 14. Weak baryon graphs. 
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4. WEAK BARYON DECAY 

Suppose we have a weak decay process A--> BC in which a baryon A 
decays weakly into two particles B and C. I shall describe this process in 
terms of the weak graphs of  A, B, and C. Roughly speaking, the weak graph 
of A first inflates to accommodate  new vertices and then disintegrates into 
two components corresponding to the weak graphs of B and C. Figures 15 
and 16 illustrate the weak processes A-->p~'- and A--> nTr ~ 

Each step in Figures 15 and 16 involves certain operations. In Figure 
15, I first perform a quark-ant iquark production on a loop and next perform 
a charge switch on adjacent vertices. Then I move one end of an edge to 

1 _ 1  2 

- g  --> 2 7 1 3 

3 3 - 7  - 3  

2_. 2 

3-- -i<e~2 i . . . .  5 

~ - 7  _2 
3 

2 

n T[ ~ 

Fig. 16. A-~ n~ -~ 
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an adjacent vertex and perform this operation twice. Finally, I make two 
cuts. I do not consider the arcs between the lower right-hand vertex of the 
triangle and the vertices on the loop to be complete edges. Hence, after the 
cuts, the dangling ends disappear  and do not need to be destroyed. These 
same operations are performed in Figure 16 together with an additional 
operation. In the next to last step, I create an edge on a loop and perform 
this operation three times. For more complicated decay processes, additional 
operations can occur. The admissible operations for weak baryon decay 
are the following. 

1. Quark-ant iquark production on a loop. 
2. Edge cut. 
3. Edge move to an adjacent vertex. 
4. Edge creation on a loop. 
5. Destroy edge after cut. 
6. Charge switch on adjacent vertices. 
7. Spin flip on a vertex. 
8. Move loop to adjacent vertex. 
9. Move loop to nonadjacent  vertex. 

The operations 7-9 can be performed at most once, while the other 
operations can be performed any number  of  times. 

I now use the operations to compute branching ratios and decay 
probabilities. To do this one needs a quantitative measure of  a particle's 
resistance toward decay along a specified channel. Roughly speaking, the 
greater the number of operations and the redundancy of operations, the 
more unlikely will be a decay along that channel. I postulate that each 
operation has a certain cost. Moreover, decay processes dislike redundancy, 
so repeated operations require additional costs. For a decay process A ~ BC,  

the weak graph A transforms into the component  weak graphs of B and C 
via admissible operations that minimize the total cost. The total cost, which 
is defined as the sum of the costs of the operations, is denoted c ( A ~  B C ) .  

The cost for one operation of type 9 is three units and the cost for one 
operation of any other type is one unit. For repeated operations of  types 
1-5 the cost sequence is 1, 3, 5, 7 . . . .  , while for repeated operations of type 
6 the cost sequence is 1, 5, 9, 13 . . . . .  For example, if a type 4 operation is 
performed three times, then the cost for the first time is one unit, the second 
time is three units, and the third time is five units. 

Denoting the mass of  a particle X by rex, I define the mass  difference 
of the process A ~ B C  by 

A m ( A  ~ B C )  = m A  - -  mB - m c  

Suppose a particle A can decay along various channels A ~ BiCi, i = 1 , . . . ,  n. 
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Denote  the mass difference and cost o f  the ith channel  by Ami, and ci, 
respectively, i =  1 , . . . ,  n. I postulate that the branching ratio of  the j th  
channel  to the kth channel  for  a weak baryon  decay is 

CkAm k 
r jk -  cjAmj 

Moreover ,  the decay probabilities 

P~ = P ( A  --> B~C,), i = 1 , . . . ,  n 

satisfy r~k = PJPk .  I f  it is known that ~n=l Vi = 1, then it easily follows that 

Pj = 1 + (rj-k)-' , j = 1, . .  . ,  n 
I 

Following tradition, I shall multiply decay probabilit ies by 100, so strictly 
speaking I am really referring to decay percentages.  

Let us apply these ideas to the decay processes in Figures 15 and 16, 
which I designate as channels  1 and 2, respectively. Adding costs in the 
order  o f  the steps o f  Figures 15 and 16, we have 

Since 

we have 

and 

c 1 = 1 + 1 + 1 + 3 + 1 + 3 = 1 0  

c 2 = 1 + 1 + 1 + 1 + 3 + 5 + 1 + 3 = 1 6  

Am~ = m A - -  m p  - -  m s -  = 1115.6-938.3  - 139.6 = 37.3 

A m  2 = m A - -  m, - m=o = 1115 .6-  939.6 - 135 = 41 

c2Am2 16(41) 
r12- c lAm ~ -- 10(37.3~ -- 1.74 (1.79 + 0.04) 

1 1.74 
P1 - 1 + (r~2) -1 - ~2/̂ .~-----Z = 63.5 (64.2 + 0.5) 

P2 = 36.5 (35.8+0.5)  

where the numbers  in parentheses are experimental  values (Aguilar-Benitez 
et al., 1986). 
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Fig. 17. X + -> p~r ~ 

Let us now consider other examples of weak baryon decay processes. 
The decay processes X+-->pTr ~ and %+--> n~r + are illustrated in Figures 17 
and 18, respectively. The total costs become 

q = 1 + 1 + 3 + 1 + 3 + 5 + 1 + 3 = 1 8  

c 2 = 1 + 1 + 5 + 9 + 1 + 3 = 2 0  

2 
3 3 

Z + 

> 

> -3  

1 1 1 I -5  3 -3  

> 
2 2 1 2_ 
3 . . . .  3 - 3  . . . .  3 

2_ ! 

1 1 -~(~" "rb- 3 

2 

-3  
n 

Fig. 18. 

2 1 

~+ --> nTr +. 
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We then have 

c2Am2 20(110.2) 
- 1.055 (1.068+0.013) 

r ] 2 -  ClAm 1 - 18(116.1) 

P1 = 51.34 (51.64 + 0.30) 

P2 = 48.66 (48.36 + 0.30). 

The decay processes f~ ~ K - A ,  ~)~ ~~ and ~ ~ ~ - r  ~ are illustrated 
in Figures 19-21, respectively. The total costs become 

r 1 + 1 + 1 + 1 + 3 + 1 + 3 + 5 + 7 + 1  = 2 4  

c2 = 1 + 1 + 1 + 1 + 3 + 5 + 7 + 1  = 2 0  

e3 = 1 + 1 + 1 + 3 + 1 + 3 + 5 + 1 + 3 + 5 + 7 + 9 + 1 1 + 1 + 3  = 5 5  

We then have 

e2Am2 20(217.9) =2 .87  (2.87+0.05) 
/ ' 1 2  - -  - -  - -  

c lAm1 24(63.2) 

c3Am3 55(216.2) 
r13 -- e~Am---~l - 24(63.2) - 7.84 (7.88 + 0.42) 

Pl = 67.8 (67.8 + 0.7) 

,~ = P__L= 23.6 (23.6+0.7)  
r12 

P3 = P--L1 = 8.65 (8.6 + 0.4) 
r13 

._> - ->  3 3 

3 3 ~ 3 - ~  3 3 

1 . !  i _ !  _..> -~  3 ----> -~  s 

- g  3 3 -g  3 

1 _ !  

-g  3 3 A -g  

Fig. 19. ~ I -~AK- .  

_!  
3 

A 2 

K- 
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5. WEAK MESON DECAY 

If a node of a graph has charge 1/3 or - 2 / 3 ,  I call it an antivertex 
and if the node has charge - 1 / 3  or 2/3, I call it a vertex as before. Of 
course, a baryon graph has three vertices or three antivertices, while a meson 
graph has a vertex and an antivertex. A loop on a vertex is again called a 
loop, while a loop on an antivertex will be called an antiloop. For a weak 
meson decay I postulate that vertices must remain vertices and antivertices 

2 2 " 

3 3 3 3 
2_ .2_ 

3 3 

2 2 3 -3  

3 3 

3 3 

_.._> 

1 ~ -  1 ii. o -~ ~ -~- 

Fig. 21. ~ _ > ~ -  o. 
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must remain antivertices. Thus, a charge switch cannot be applied if it 
changes a vertex to an antivertex or vice versa. 

The operations for a weak meson decay are the same as for a weak 
baryon decay, except that we have two additional operations. 

10. Loop or antiloop creation. 
11. Move a charge of +2/3 along an edge. 

Operation 11 can be applied at most once. For weak meson decay, the costs 
of  operations 1-9 are the same as for weak baryon decay except that a 
multiple edge can be destroyed at 0 cost (and repeated at 0 cost), it can be 
moved to an adjacent vertex to form a loop at 0 cost (and repeated at 0 
cost) and it can be moved anywhere at a cost of  one unit (and repeated at 
a cost of  one unit). The cost of  operation 11 is 1/3. For operation 10, 
suppose m loops and n antiloops are created. Then the total cost of  these 
m + n operations is 

I1 + 2 + - . .  + m - 1 - 2  . . . . .  n I = �89 + 1) - n(n + 1)1 

In Section 4 we only considered weak baryon decays for which there 
were two decay products, since many of the important  decay processes had 
this property. However, there are important weak meson decays with three 
decay products. The situation then becomes more complicated. Let A 
B C D . . .  be a weak decay process. Assuming that neutrinos have zero mass, 
let n be the number  of  massive charged decay products, q the number  of 
massive chargeless decay products, m the number  of  massless decay prod- 
ucts, and p = n + m + q the total number of  decay products. We define the 
mass factor by 

r n, 
f(A-' BCD'")=II+(p-2)IL -12 16 

where (q)= q ( q - 1 ) ( q - 2 ) / 6 .  Of course, if there are two decay products, 
f ( A ~  BC)= 1 and we have the situation in Section 4. 

I postulate that the branching ratio o f t h e j t h  channel to the kth channel 
for a weak meson decay process is 

cks 
rjk Cjfk Am k 

as before, the decay probabilities satisfy rjk = Pj/Pk. 
The decay processes K+-~ txu~,, K+~ ~~162 K+~ 7r+Tr+rr -, K+-~ 

�9 r~176 +, K+~ 7r~ and K + ~  ~r~ are illustrated in Figures 22-27, 
respectively. 
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In Figures 24 and 25, a 2/3, -2 /3  production is considered to be a 
different operation than a 1/3, -1 /3  production. In the order given above, 
the total costs become 

c , = 1 + 2 + ~ + 1 + 3 + 1 = 8 � 8 9  

c 2 = 1 + 1 + 3 + 5 + 1 + 3 = 1 4  

2 2 
3 

3 3 

2 1 2 1 

2 3 3" _1  1 3 3 2 
-~ 3 3 3 

Fig. 24. K+--> zr+'n'+~ "-. 
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Fig. 25. K + ~  7r~176 

c3 = 1 + 1 + 1 + 1 + 5 + 1 + 3 + 5 + 7 = 2 5  

Ca = 1 + 1 + 1 + 1 + 3 + 5 + 7 + 9 + 1 1 + 1 + 3 + 5 + 7 = 5 5  

c5 = 1 + 1 + 3 + 5 + � 8 9  =271 

c6= 1 + 1 + 2 - 1 + � 8 9  =29~. 

The mass factors become 

f l  = f2  = 1, f3=ll+�89 4 =5  =7, f4=l l -~[  

f5 =f6= 11-~-91 =4~ 

2 2 g 

_ K+~g --~ _ ---> g 
2 
3 

2 
3 

--> ~ > �9 
_ 2_ T~O e V e 

3 
Fig. 26. K +--, ~r~ eu,.. 

2 
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Fig. 27. K + ~ 7r~ 

We then have 

F I 2 =  - -  

F 1 3 - ~  - -  

r14~_~_ - -  

/ ' I 5  ~ - -  

F I 6  = - -  

P I  = 

t,2= 

G =  

czflAml 14(388) 
- -  = 2.98 (3.00• 

Clf2Am2 8�89 

c3flAml 25(388) 

c~f~dxm3 81(5)(74.9) 
= 11.66 (11.36• 

c4flAml 55(388) 

c~f4Am4 8�89 (84.1) 
= 36.5 (36.7 • 0.2) 

csflAml 271(388) 

qfsAms 83~(~)(358.2) 
- -13 .12(13.18•  

c6f~Am~ 29�89 
clf6Am 6 1 13 85(~)(253) 

- 19.9 (20.0 + 0.7) 

]' 
1+ (r~k) -~ =63 .49(63 .51•  

k = l  

P~ = 21.30 (21.17 • 0.15) 
r 1 2  

P_L~ = 5.45 (5.59 • 0.03) 
F13  
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i _2 
3 3 

2 _i - -  1 

2 I I ~ _ ~  2 ---> - ~ 0  A __  ~ -w  3 3 3 

Fig. 28. K ~  7r-w +. 

p4 = P__!= 1.74 (1.73• 
r14 

P5 = P I =  4.84 (4.82• 
r15 

P6 = P1 = 3.19 (3.18 • 0.10). 
r16 

The decay processes K s ~ c r - ~  -§ and Ks~Tr~ ~ are illustrated in 
Figures 28 and 29, respectively. The total costs become 

c1= 1 + 1 + 0 + 0 + 0 + 1 + 3  = 6  

c2 = 1 + 1 + 3 + 5 +  1 + 3 =  14 

Since fl  =f2  = 1, we have 

cz f lAml  14(218.5) 
- 2.24 (2.19+0.02) 

r12 -- clf2Aml - 6(227.7) 

?'12 
P1 - - -  69.14 (68.61+0.24) 

1 + r12 

P2 = 30.86 (31.39 + 0.24) 

I 

3 

-~ K s -~ -~ _i -~ 
3 

---> 1 2 2 

yL0 ~ 0  

Fig. 29. K~ -~ ?r~ ~ 
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2 2 

K n s 3 - ~  

_ i  _ i  
3 3 

2 ~ 2 

> - ~ o - - - e - ~  o �9 
T[,- V e e 

Fig. 30. KL ~ rr-eu~. 

2 _! 
3 

1 2 - -  

_• 

_m 

3 

i 2 
> - ~ 0 - - - - - 0  - ~  

TL- 

Fig .  31 .  K L --> ~" /~u~. 

_2 _ i  

2 ! 
3 

-g KL ~ ~ -g 3 ~ 3 
2 1 

3 

-~ ~ ~~-~-~:~ ~-~  
-3  __ 11"0 1io go 

Fig .  32 .  K ~  ~ 3 rr ~ 
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The decay processes K L ~  7"r-eVe, KL~  7r-/xu,, K L ~  37r ~ K L ~  7r+~'+Tr ~ are 
illustrated in Figures 30-33, respectively. In Figure 33, the cuts on the 
four-edge pair 1/3, - 1 / 3  is considered to be different than the cuts on the 
one-edge pair - 1 / 3 ,  2/3. The total costs become 

= 1 c~ 1 + 0 + 0 + 0 + 1 + 3 + 1 + 3 + 5 + 7 + 1 = 1 9 � 8 9  

c2= 1 + 1 + 1 + 0 + 0 + 0 + 1 + 3 + 5 + 7 + 1  = 19~ 

c3 = 1 + 1 + 1 + 1 + 3 + 5 + 7 + 9 + 1 1 + 1 + 3 + 5 + 7 = 5 5  

c4= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 3 + 1 + 3 =  15. 

The mass factors become 

We then have 

= ~  

f 3 = 1 1 - ~ + 6 1 = 6  7 

A = I I + ~ [ = I ~  

c2flAml Am1 357.6 
- -  - 1.42 ( 1.43 + 0.09) 

r12- caf2Am2 - Am2 251.9 

c3f~Arn~ 55(~)(357.6) 
r,3 -- c l f 3 A m  3 -- 19�89 

c4faAm, 15(4~)(357.6) 
r ' 4 - -  c l f 4 A m 4  -- 1 9 1 ( 1 ~ ) ( 8 3 . 5 )  

= 0.868 (0.900 + 0.076) 

= 1.60 (1.56+0.08) 

_i 
3 K L 

---> 

2 i 
~ 3 

3 3 - ~  3 3 3 

1 _1 1 1 3 3 3 - ~  

3 3 3 3 3 3 

"IT'- ~ +  ~0  

Fig. 33. K L -+ 7r+~r ~ 
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+ 
We also have the processes KL-> ~+eue, and KL--> lr /xu,, which have the 
same branching ratios and decay probabilities as KL-~r-e~'e and KL-~ 
~r-/xv~, respectively. If we call these processes 5 and 6, respectively, we have 

PI=P5 = 1+ (r~k) -~ =19.3(19.4+0.6)  
k = l  

p2= P6= P--L=13.6 (13.6 + 0.4) 
FI2 

P3 = P l  = 22.2 (21.5 5: 1.0) 
F13 

P4 : P~ = 12.1 (12.4• 
r14 

6. S T R O N G  B A R Y O N  D E C A Y  

The admissible operations for strong baryon decay processes are the fol- 
lowing. 

1. Quark-antiquark production on pairs of excitation vertices. 
2. Quark-antiquark production on adjacent edges. 
3. Edge cut. 
4. Edge move to adjacent vertex. 
5. Destroy edge after cut. 
6. Spin flip on a vertex. 
7. Reattach cut edge. 
8. Destroy excitation vertex. 

The cost sequence for edge cuts is 1, 2, 3 , . . . .  There is no additional cost 
for repeated operations of  any other type. The cost for an operation of type 
1 is 1 unit and for types 5 and 6 the cost is zero. For type 2 operations, if 
the edges have not been moved, the cost is 1 unit; otherwise, if the moved 
edge is a basic edge, then the cost is 4 units and if the moved edge is an 
excitation edge, then the cost is 16 units. For type 4 operations, if the edge 
move forms a double edge, the cost is 4 units and otherwise it is 1 unit. 
The cost for operations of types 7 and 8 is 8 units. 

The mass factor is 

f ( A - - > B C . . . ) =  1 + ( 3  ) +31 

where p is the number of decay products and I is the total number of loops 
in the decay products. The channel ratio is defined to be r12 = Czfz/c~fl if 
the underlying basic baryon has spin 1/2 and r12 = czfl/ctf2 if the underlying 
basic baryon has spin 3/2. Figures 34 and 35 illustrate the strong processes 
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) ) 

N(1440) N 

Fig. 34. N(1440)~ NTr. 

G A 
w 

N(i440) N 

Fig. 35. N(1440)~ N~-~-. 

N(1440)  ~ NTr and N(1440)-~ N~Tr, respectively. As in some of  the weak 
decay processes, there are two different kinds of  edge cuts in Figure 35. We 
then have 

c~= 1 + 1 + 2 + 3 + 4 =  11 

c2 = 1 + 1 + 1 + 2 + 1 + 2 = 8  

f ~ = l ,  f 2 = 2  

Hence,  

r12= 16 /11=  1.45 

P1 = 1.45/2.45 = 59 (50-70) 

P2 = 41 (30-50) 

Figures 36 and 37 illustrate the strong processes N ( 1 5 2 0 ) ~  N~- and 
N(1520)  ~ NTrTr, respectively. The total costs and mass factors become 

cl = 1 + 1 + 1 + 2 + 3 + 4 + 5 + 6 = 2 3  

c2= 1 + 1 + 1 + 2 + 3 + 4 + 1 + 2 =  15 

f l = l ,  f 2 = 2 .  

N(152o) 
Fig. 36. N(1520)~ NTr. 

TL 
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+ 
N(1520) 

Fig. 37. N(1520)~ Nrr~,. 

C>----e �9 " w 

Jl 11 

N(1535) 

---9 > 

N 
Fig. 38. N(1535)-~ Nr/. 

Hence, 

r12 = 30/23 : 1.30 

P1 = 1.30/2.30 : 57 (50-60) 

1~ = 43 (40-50). 

Figures 38-40 illustrate the strong processes N(1535) ~ N~7, N(1535) 
N~-, N ( 1 5 3 5 ) ~  NTrTr, respectively. In Figures 39 and 40, the first four steps 

N(1535) 

> ooo 

Fig. 39. N(1535)~ NTr. 
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N(1535) N 

Fig. 40. N(1535)--,  N~rTr. 

a r e t h e s a m e a s i n  Figure38. T h e t o t a l c o s t s a n d  mass ~c to r sbecome  

c ~ = 1 + 1 + 1 + 1 + 4 + 1 + 2 = 1 1  

c 2 = 1 + 1 + 1 + 1 + 1 + 2 + 3 + 4 = 1 4  

c 3 = 1 + 1 + 1 + 1 + 1 6 + 1 + 2 + 1 + 2 = 2 6  

L = ~ = I ,  ~ = 2  

Hence, 

r12 = ~ = 1.27 
52 

r13 = T~ = 4 . 7 3  

P, = [1 + ( r ,2) - '  + ( r , 3 ) - ' ] - '  = 50 (45-55) 

P2 = - -  P'  = 39 (35-50) 
r,2 

P3 =--=P1 11 (~10) 
r13 

Figures 41-43 illustrate the strong processes N(1650)~  NTr, N(1650) 
NTrTr, N(1650)~  AK. The total costs and mass factors become 

cl = 1 + 1 + 1 + 2 + 3 + 4 + 5 + 6 + 8 + 8 + 1 + 2 + 3 + 4 + 5 + 6 = 6 0  

c2= 1+ 1+ 1 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 +  10= 58 

e3 = 1 + 1 + 1 + 2 + 3 + 4 + 5 + 6 + 8 + 8 + 8 +  1 + 2 + 3 + 4 =  65 

f ~ = l ,  A = 2 ,  f3=7 .  

N(1650) 
Fig. 41. 

N 

N(1650)  ~ NTr. 
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N(1650) 

Fig. 42. N(1650)--> N~r~'. 

Hence ,  

2(58) 
- - -  1.93 r l 2 -  60 

7(65) 
r13 - = 7.58 

60 

P, = [1 + (r,2)-1 + (r,3)-1] -1 = 61 (55-65) 

P2 = P---~' = 31 (20-35) 
r,2 

P3 = P___! = 8 ( ~ 8 )  
/'13 

Figures  44 and  45 i l lust ra te  the s t rong processes  A(1620)-+ N~rTr and  
A(1620)--> N~-. The total  costs and  mass factors  become  

cl = 1 + 1 + 4 + 1 + 2 + 3 + 4 + 1 + 2 =  19 

c2 = 1 + 1 + 1 + 1 + 2 + 3 + 4 + 5 + 6 = 2 4  

f , = l ,  f 2 = 2  

N(1650) 

K 

A 
Fig. 43. N(1650)--, AK. 
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Fig. 44. A(1620)-+ N~-. 

Hence, 

r12 = 48/19 = 2.53 

P1 = 2.53/3.53 = 72 (65-75) 

e2 = 28 (25-35) 

7. R E M A R K S  

The particle decay model presented here not only gives quantitative 
predictions, it gives a qualitative way of "seeing" how a decay process takes 
place. Of course, I have only considered a few examples from among the 
vast number of possible decay processes. In particular, I have not considered 
decay processes for which there is essentially only one decay channel. An 
important example is the neutron/3-decay exhibited in Figure 46. 

A(1620) 

~ d ~  ~ 5 ~  ~---* ~ 
$ • N 

w 

Fig. 45. A(1620)-+ N~. 
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2 2 2 2 

3 3 ~ 3 3 

_! 
3 

2 

2 3 

3 3 

_! 
3 

2 5( )_ 
P 

_.__) 

1 _!  
3 3 

2 ~ _  1 
3 3 3 

�9 O 
e V e 

Fig. 46. n --> pev~. 

Although the model presented here gives some predictions, it leaves 
many unanswered questions. For example, it does not address the question 
of why certain decay channels are suppressed. Moreover, it does not predict 
the very small branching ratios and decay probabilities for these suppressed 
channels. For instance, it does not answer why the processes A~peve, 
A~p/x~,~ and A~pTr-6 are suppressed and why they have the incredibly 
small decay probabilities 8.35 • 10 -4, 1.57 • 10 -4, and 8.5 • 10-4(% ), respec- 
tively. As another example, I have neglected the process N(1650)~  Nr  t in 
Section 6. I do not know why this process is suppressed and only has 
probability 1.5%. Presumably, there are rules or conservation laws that 
inhibit these processes. Two other questions the model does not answer are 
the following. When have we found all the significant channels so that their 
probabilities sum to approximately 1 ? Why does Ks decay differently than 
KL? 
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